Smart Glass and Its Potential in Energy Savings
Article in Journal of Energy Resources Technology 136(1):012002 · February 2013 with 39 Reads
Impact Factor: 1.89 · DOI: 10.1115/1.4024768
1st Kaufui Vincent Wong
27.07 · University of Miami
2nd Richard Chan
Abstract
Smart glass is such that its properties may be changed by application of a potential across it. The change in properties may be engineered to alter the amount of heat energy that can penetrate the glass which provides heating and cooling design options. Therein lies its potential in energy savings. Smart glass may be classified into three types: electrochromic, suspended particle, and polymer dispersed liquid crystal (PDLC). Each of these types has their own mechanisms, advantages, and disadvantages. Electrochromic smart glass is the most popular, currently it utilizes an electrochromic film with an ion storage layer and ion conductor placed between two transparent plates. The electrochromic film is usually made of tungsten oxide, owing to the electrochromic nature of transition metals. An electric potential initiates a redox reaction of the electrochromic film transitioning the color and the transparency of the smart glass. Suspended particle smart glass has needle shaped particles suspended within an organic gel placed between two electrodes. In its off state, the particles are randomly dispersed and have a low light transmittance. Once a voltage is applied, the needle particles will orient themselves to allow for light to pass through. PDLC smart glass works similarly to the suspended particle variety. However, in PDLC smart glass, the central layer is a liquid crystal placed within a polymer matrix between electrodes. Similar in behavior to the suspended particles, in the off position the liquid crystals are randomly dispersed and have low transmittance. With the application of a voltage, the liquid crystals orient themselves, thereby allowing for the transmittance of light. These different smart glasses have many different applications, but with one hindrance. The requirement of a voltage source is a major disadvantage which greatly complicates the overall installation and manufacturing processes. However, the integration of photovoltaic (PV) devices into smart glass technology has provided one solution. Photovoltaic films attached in the smart glass will provide the necessary voltage source. The photovoltaic film may even be designed to produce more voltage than needed. The use a photovoltaic smart glass system provides significant cost savings in regards to heating, cooling, lighting, and overall energy bills. Smart glass represents a technology with a great deal of potential to reduce energy demand. Action steps have been identified to propagate the popular use of smart glass.